Compound-eye-based multidimensional imager

نویسندگان

  • Ryoichi Horisaki
  • Tomoya Nakamura
  • Jun Tanida
چکیده

In imaging applications, such as security or biomedical imaging, increasing the number of dimensions of acquirable optical signals could help identify and classify objects in the image. However, conventional approaches to gain additional information, such as depth or spectral data, with a 2D image sensor, sacrifice spatial or temporal resolution. We have developed two promising approaches using compound-eye optics for future imaging systems that capture and make use of the additional dimensions without sacrificing resolution. Our first approach is based on compressive sensing to observe the multidimensional signals. The optical design modulates each dimension, and a sparsity-based reconstruction solves the (ill-posed) inverse problem. The second approach uses dimensionally invariant optical design and signal processing to observe a 2D image of a 3D object with a wide field of view (FOV) and an extended depth of field (DOF). The visual organs of insects and crustaceans are compound eyes. They are composed of lenslets, partitions, and detectors as shown in Figure 1. In the apposition type, each detector optically connects to a single lenslet. In the superposition type, a detector connects to multiple lenslets. Both types have unique features and are used in various innovative imaging systems, notably for compact imaging hardware.1 Optical signals have multiple dimensions, including 3D position (x; y; z), time (t ), wavelength ( ), and polarization (p). Conventional approaches to observing these parameters with an image sensor compromise the lateral spatial resolution (x; y) or the temporal resolution. We have introduced an apposition compound eye for single-shot multidimensional imaging based on compressive sensing (CS).2 In this approach, the basic optical unit in the compound eye—made up of a lenslet, detector (sensor), and partition—is differently modulated in each physical dimension except the lateral spatial ones (x; y). Figure 2 shows Figure 1. (a) Apposition and (b) superposition compound eyes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Miniature curved artificial compound eyes.

In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is cha...

متن کامل

Spectral-Based Blind Image Restoration Method for Thin TOMBO Imagers

With the recent advances in microelectronic fabrication technology, it becomes now possible to fabricate thin imagers, less than half a millimeter thick. Dubbed TOMBO (an acronym for thin observation module by bound optics), a thin camera-on-a-chip integrates micro-optics and photo-sensing elements, together with advanced processing circuitry, all on a single silicon chip. Modeled after the com...

متن کامل

Spatio Temporal Noise Model For Measuring Contrast Sensitivity of Human Eye System – How Complex Is Defining Bad Imager Pixel

This paper talks about defining an image quality metric to quantify physical defects in an image. Perception based detection threshold from a panel of subjects is identified by conducting various experiments on test pattern images. Spatio-temporal noise model for a human visual system is briefly presented. These models and experimental data presented are done under certain simplifying assumptio...

متن کامل

High-resolution photoacoustic imaging with focused laser and ultrasonic beams.

We report a photoacoustic imager that utilizes a focused laser beam in combination with a 20 MHz ultrasound focusing transducer to obtain micron-resolution tissue images over a long working distance. The imager is based on a ring transducer that combines ultrasonic and laser beams collinearly and confocally in a monolithic element. The combination of focused laser beam and short pulse irradiati...

متن کامل

Compact CMOS Camera Demonstrator (C3D) for Ukube-1

The Open University, in collaboration with e2v technologies and XCAM Ltd, have been selected to fly an EO (Earth Observation) technology demonstrator and in-orbit radiation damage characterisation instrument on board the UK Space Agency’s UKube-1 pilot Cubesat programme. Cubesat payloads offer a unique opportunity to rapidly build and fly space hardware for minimal cost, providing easy access t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014